ヘッケ指標

 

出典: フリー百科事典『ウィキペディア(Wikipedia)』

数論では、ヘッケ指標(Hecke character)はディリクレ指標の一般化であり、エーリッヒ・ヘッケ英語版)(Erich Hecke)によりディリクレのL-函数よりも大きな L-函数のクラスを構成するために導入された。ヘッケのL-函数はデデキントゼータ函数の自然な設定とリーマンゼータ函数の満たす函数等式に似た函数等式を持つ。

しばしば、ヘッケ指標は、ドイツ語の量指標(Größencharakter)という単語で使われる(また、Grössencharakter, Grossencharacterなどと書かれる)。

2つの定義の間の関係

イデアルでの定義はイデール的な定義よりも非常に複雑で、ヘッケの定義したことの動機は、(ヘッケのL-函数と呼ばれる)L-函数の構成にあった。 ヘッケのL-函数はディリクレのL-函数の考えを、有理数から他の代数体へ拡張したものである。ヘッケ指標 χ に対し、ヘッケ指標のL-函数は、次のディリクレ級数として定義される。

イデールを使う定義

ヘッケ指標は、数体大域函数体イデアル類群乗法的指標(Multiplicative character)である。ヘッケ指標は、射影的写像をもつ合成を経由して、主イデール英語版)(principal idele)の指標に一意に対応する。

この定義は指標の定義に依存している。指標の定義は書籍の筆者により少し異なっている。0 を含まない複素数(「準指標とも言う)への準同型として定義されるかもしれないし、C の単位円の群英語版)(unit circle in C)(「ユニタリ性」)であるかもしれない。任意のイデール類群の準指標は、一意的にユニタリ指標にノルムの実数べきをかけた値として書くことができ、2つの定義にさほどの大きな差異はない。

イデアルを使う定義

ヘッケに遡ると、ヘッケ指標の元来の定義は、分数イデアル上の指標を使っていた。数体 K に対し、m = mfm を、有限部分としては K のイデアル mf を持ち、無限部分としては K の実数の(place)の「形式的な」積として持つ K-モジュラス英語版)(modulus)とする。Im で K の分数イデアルの群を素イデアル mf を表し、Pm で主分数イデアル (a) の部分群を表す。ここに a は、その因子の多重度に応じて、各々の m の座で 1 に近く。mf の中の各々の有限の座 v に対し、ordv(a – 1) は、少なくとも mf の中の v の成分と同じ大きさであり、a は m への各々の実埋め込みの下では正である。modulus m を持つヘッケ指標は、Im から 0 でない複素数への群準同型であり、Pm の中のイデアル (a) に対し、その値は、K のすべてのアルキメデス的完備化の乗法群の積から 0 でない複素数への連続写像の a での値に等しい。

  1. 有理数体に対し、イデール類群は正の実数なす乗法群と p 進整数環の単数群全てとの積に同型である。ヘッケ指標は絶対値のべきとディリクレ指標の積となる。
  2. s を虚数で n を整数として、イデアル (a) の生成子を a とする。ガウス整数環の単数は i のべきなので、指数が 4 の倍数である事から指標がイデアルの上で定義される。

代数的ヘッケ指標

代数的ヘッケ指標(algebraic Hecke character)とは、ヘッケ指標のうちで像がある代数体にふくまれるものをいう。代数的ヘッケ指標は、ヴェイユにより1947年にタイプ A0 の名前で導入された。その指標は、類体論虚数乗法論の中に現れる。

たとえば E を代数体 F 上定義された楕円曲線で虚二次体 K による虚数乗法を持つものとする。S を K の素点のうち E が悪い還元をもつ素点と無限素点をすべて集めた集合とする。このとき K の代数的ヘッケ指標 χ が存在し、p を S に属さない素点とすると値 χ(p) がフロベニウス自己準同型固有多項式の根であるという性質を持っている。このことから、E のハッセ・ヴェイユのゼータ函数は、χ とその共役の 2つの L 函数の積であることがわかる

To Top
To Top